Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
PLoS Comput Biol ; 18(10): e1010602, 2022 10.
Article in English | MEDLINE | ID: covidwho-2054252

ABSTRACT

We analyze an ensemble of n-sub-epidemic modeling for forecasting the trajectory of epidemics and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes. We systematically assess their calibration and short-term forecasting performance in short-term forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022. We compare their performance with two commonly used statistical ARIMA models. The best fit sub-epidemic model and three ensemble models constructed using the top-ranking sub-epidemic models consistently outperformed the ARIMA models in terms of the weighted interval score (WIS) and the coverage of the 95% prediction interval across the 10-, 20-, and 30-day short-term forecasts. In our 30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-epidemic models, whereas it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 short-term forecasts, the ensemble model incorporating the top four ranking sub-epidemic models (Ensemble(4)) outperformed the (log) ARIMA model 66.3% of the time, and the ARIMA model, 69.4% of the time in 30-day ahead forecasts in terms of the WIS. Ensemble(4) consistently yielded the best performance in terms of the metrics that account for the uncertainty of the predictions. This framework can be readily applied to investigate the spread of epidemics and pandemics beyond COVID-19, as well as other dynamic growth processes found in nature and society that would benefit from short-term predictions.


Subject(s)
COVID-19 , Humans , United States/epidemiology , COVID-19/epidemiology , Pandemics , Forecasting , Models, Statistical , Time
3.
Int J Infect Dis ; 122: 910-920, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2015444

ABSTRACT

OBJECTIVES: Indigenous populations have been disproportionately affected during pandemics. We investigated COVID-19 mortality estimates among indigenous and non-indigenous populations at national and sub-national levels in Mexico. METHODS: We obtained data from the Ministry of Health, Mexico, on 2,173,036 laboratory-confirmed RT-PCR positive COVID-19 cases and 238,803 deaths. We estimated mortality per 1000 person-weeks, mortality rate ratio (RR) among indigenous vs. non-indigenous groups, and hazard ratio (HR) for COVID-19 deaths across four waves of the pandemic, from February 2020 to March 2022. We also assessed differences in the reproduction number (Rt). RESULTS: The mortality rate among indigenous populations of Mexico was 68% higher than that of non-indigenous groups. Out of 32 federal entities, 23 exhibited higher mortality rates among indigenous groups (P < 0.05 in 13 entities). The fourth wave showed the highest RR (2.40). The crude HR was 1.67 (95% CI: 1.62, 1.72), which decreased to 1.08 (95% CI: 1.04, 1.11) after controlling for other covariates. During the intense fourth wave, the Rt among the two groups was comparable. CONCLUSION: Indigenous status is a significant risk factor for COVID-19 mortality in Mexico. Our findings may reflect disparities in non-pharmaceutical (e.g., handwashing and using facemasks), and COVID-19 vaccination interventions among indigenous and non-indigenous populations in Mexico.


Subject(s)
COVID-19 , COVID-19 Vaccines , Humans , Mexico/epidemiology , Pandemics , Risk Factors
4.
PLoS Negl Trop Dis ; 16(3): e0010228, 2022 03.
Article in English | MEDLINE | ID: covidwho-1731580

ABSTRACT

Colombia announced the first case of severe acute respiratory syndrome coronavirus 2 on March 6, 2020. Since then, the country has reported a total of 5,002,387 cases and 127,258 deaths as of October 31, 2021. The aggressive transmission dynamics of SARS-CoV-2 motivate an investigation of COVID-19 at the national and regional levels in Colombia. We utilize the case incidence and mortality data to estimate the transmission potential and generate short-term forecasts of the COVID-19 pandemic to inform the public health policies using previously validated mathematical models. The analysis is augmented by the examination of geographic heterogeneity of COVID-19 at the departmental level along with the investigation of mobility and social media trends. Overall, the national and regional reproduction numbers show sustained disease transmission during the early phase of the pandemic, exhibiting sub-exponential growth dynamics. Whereas the most recent estimates of reproduction number indicate disease containment, with Rt<1.0 as of October 31, 2021. On the forecasting front, the sub-epidemic model performs best at capturing the 30-day ahead COVID-19 trajectory compared to the Richards and generalized logistic growth model. Nevertheless, the spatial variability in the incidence rate patterns across different departments can be grouped into four distinct clusters. As the case incidence surged in July 2020, an increase in mobility patterns was also observed. On the contrary, a spike in the number of tweets indicating the stay-at-home orders was observed in November 2020 when the case incidence had already plateaued, indicating the pandemic fatigue in the country.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Colombia/epidemiology , Forecasting , Humans , SARS-CoV-2
5.
Epidemiologia (Basel) ; 2(4): 639-659, 2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1580905

ABSTRACT

Nepal was hard hit by a second wave of COVID-19 from April-May 2021. We investigated the transmission dynamics of COVID-19 at the national and provincial levels by using data on laboratory-confirmed RT-PCR positive cases from the official national situation reports. We performed 8 week-to-week sequential forecasts of 10-days and 20-days at national level using three dynamic phenomenological growth models from 5 March 2021-22 May 2021. We also estimated effective and instantaneous reproduction numbers at national and provincial levels using established methods and evaluated the mobility trends using Google's mobility data. Our forecast estimates indicated a declining trend of COVID-19 cases in Nepal as of June 2021. Sub-epidemic and Richards models provided reasonable short-term projections of COVID-19 cases based on standard performance metrics. There was a linear pattern in the trajectory of COVID-19 incidence during the first wave (deceleration of growth parameter (p) = 0.41-0.43, reproduction number (Rt) at 1.1 (95% CI: 1.1, 1.2)), and a sub-exponential growth pattern in the second wave (p = 0.61 (95% CI: 0.58, 0.64)) and Rt at 1.3 (95% CI: 1.3, 1.3)). Across provinces, Rt ranged from 1.2 to 1.5 during the early growth phase of the second wave. The instantaneous Rt fluctuated around 1.0 since January 2021 indicating well sustained transmission. The peak in mobility across different areas coincided with an increasing incidence trend of COVID-19. In conclusion, we found that the sub-epidemic and Richards models yielded reasonable short-terms projections of the COVID-19 trajectory in Nepal, which are useful for healthcare utilization planning.

6.
Int J Infect Dis ; 113: 347-354, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1525812

ABSTRACT

OBJECTIVES: This study examined how socio-demographic, climate and population health characteristics shaped the geospatial variability in excess mortality patterns during the COVID-19 pandemic in Mexico. METHODS: We used Serfling regression models to estimate all-cause excess mortality rates for all 32 Mexican states. The association between socio-demographic, climate, health indicators and excess mortality rates were determined using multiple linear regression analyses. Functional data analysis characterized clusters of states with distinct excess mortality growth rate curves. RESULTS: The overall all-cause excess deaths rate during the COVID-19 pandemic in Mexico until April 10, 2021 was estimated at 39.66 per 10 000 population. The lowest excess death rates were observed in southeastern states including Chiapas (12.72) and Oaxaca (13.42), whereas Mexico City had the highest rate (106.17), followed by Tlaxcala (51.99). We found a positive association of excess mortality rates with aging index, marginalization index, and average household size (P < 0.001) in the final adjusted model (Model R2=77%). We identified four distinct clusters with qualitatively similar excess mortality curves. CONCLUSION: Central states exhibited the highest excess mortality rates, whereas the distribution of aging index, marginalization index, and average household size explained the variability in excess mortality rates across Mexico.


Subject(s)
COVID-19 , Population Health , Demography , Humans , Mexico/epidemiology , Mortality , Pandemics , SARS-CoV-2
7.
Sci Rep ; 11(1): 15482, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1333991

ABSTRACT

To ensure the safe operation of schools, workplaces, nursing homes, and other businesses during COVID-19 pandemic there is an urgent need to develop cost-effective public health strategies. Here we focus on the cruise industry which was hit early by the COVID-19 pandemic, with more than 40 cruise ships reporting COVID-19 infections. We apply mathematical modeling to assess the impact of testing strategies together with social distancing protocols on the spread of the novel coronavirus during ocean cruises using an individual-level stochastic model of the transmission dynamics of COVID-19. We model the contact network, the potential importation of cases arising during shore excursions, the temporal course of infectivity at the individual level, the effects of social distancing strategies, different testing scenarios characterized by the test's sensitivity profile, and testing frequency. Our findings indicate that PCR testing at embarkation and daily testing of all individuals aboard, together with increased social distancing and other public health measures, should allow for rapid detection and isolation of COVID-19 infections and dramatically reducing the probability of onboard COVID-19 community spread. In contrast, relying only on PCR testing at embarkation would not be sufficient to avert outbreaks, even when implementing substantial levels of social distancing measures.


Subject(s)
COVID-19/prevention & control , Contact Tracing/methods , Disease Outbreaks/prevention & control , COVID-19/transmission , Humans , Models, Theoretical , Oceans and Seas , Pandemics/prevention & control , Physical Distancing , Public Health , Public Health Practice , Quarantine , SARS-CoV-2/isolation & purification , Ships
8.
PLoS One ; 16(7): e0254561, 2021.
Article in English | MEDLINE | ID: covidwho-1320547

ABSTRACT

BACKGROUND: Achieving maternal and newborn related Sustainable Development Goals targets is challenging for Nepal, mainly due to poor quality of maternity services. In this context, we aim to assess the Basic Emergency Obstetric and Newborn Care (BEmONC) service availability and readiness in health facilities in Nepal by analyzing data from Nepal Health Facility Survey (NHFS), 2015. METHODS: We utilized cross-sectional data from the nationally representative NHFS, 2015. Service availability was measured by seven signal functions of BEmONC, and service readiness by the availability and functioning of supportive items categorized into three domains: staff and guidelines, diagnostic equipment, and basic medicine and commodities. We used the World Health Organization's service availability and readiness indicators to estimate the readiness scores. We performed a multiple linear regression to identify important factors in the readiness of the health facilities to provide BEmONC services. RESULTS: The BEmONC service readiness score was significantly higher in public hospitals compared with private hospitals and peripheral public health facilities. Significant factors associated with service readiness score were the facility type (14.69 points higher in public hospitals, P<0.001), number of service delivery staff (2.49 points increase per each additional delivery staff, P<0.001), the service hours (4.89 points higher in facilities offering 24-hour services, P = 0.01) and status of periodic review of maternal and newborn deaths (4.88 points higher in facilities that conducted periodic review, P = 0.043). CONCLUSIONS: These findings suggest that BEmONC services in Nepal could be improved by increasing the number of service delivery staff, expanding service hours to 24-hours a day, and conducting periodic review of maternal and newborn deaths at health facilities, mainly in the peripheral public health facilities. The private hospitals need to be encouraged for BEmONC service readiness.


Subject(s)
Emergency Medical Services , Health Services Accessibility , Maternal Health Services , Cross-Sectional Studies , Female , Humans , Infant, Newborn , Nepal , Pregnancy
9.
PLoS One ; 16(7): e0254826, 2021.
Article in English | MEDLINE | ID: covidwho-1319519

ABSTRACT

Mexico has experienced one of the highest COVID-19 mortality rates in the world. A delayed implementation of social distancing interventions in late March 2020 and a phased reopening of the country in June 2020 has facilitated sustained disease transmission in the region. In this study we systematically generate and compare 30-day ahead forecasts using previously validated growth models based on mortality trends from the Institute for Health Metrics and Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate reproduction numbers for SARS-CoV-2 based on the methods that rely on genomic data as well as case incidence data. Subsequently, functional data analysis techniques are utilized to analyze the shapes of COVID-19 growth rate curves at the state level to characterize the spatiotemporal transmission patterns of SARS-CoV-2. The early estimates of the reproduction number for Mexico were estimated between Rt ~1.1-1.3 from the genomic and case incidence data. Moreover, the mean estimate of Rt has fluctuated around ~1.0 from late July till end of September 2020. The spatial analysis characterizes the state-level dynamics of COVID-19 into four groups with distinct epidemic trajectories based on epidemic growth rates. Our results show that the sequential mortality forecasts from the GLM and Richards model predict a downward trend in the number of deaths for all thirteen forecast periods for Mexico and Mexico City. However, the sub-epidemic and IHME models perform better predicting a more realistic stable trajectory of COVID-19 mortality trends for the last three forecast periods (09/21-10/21, 09/28-10/27, 09/28-10/27) for Mexico and Mexico City. Our findings indicate that phenomenological models are useful tools for short-term epidemic forecasting albeit forecasts need to be interpreted with caution given the dynamic implementation and lifting of social distancing measures.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Forecasting , Pandemics/statistics & numerical data , Humans , Mexico/epidemiology , Models, Statistical , Socioeconomic Factors
10.
BMC Infect Dis ; 21(1): 432, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1219140

ABSTRACT

BACKGROUND: Low testing rates and delays in reporting hinder the estimation of the mortality burden associated with the COVID-19 pandemic. During a public health emergency, estimating all cause excess deaths above an expected level of death can provide a more reliable picture of the mortality burden. Here, we aim to estimate the absolute and relative mortality impact of COVID-19 pandemic in Mexico. METHODS: We obtained weekly mortality time series due to all causes for Mexico, and by gender, and geographic region from 2015 to 2020. We also compiled surveillance data on COVID-19 cases and deaths to assess the timing and intensity of the pandemic and assembled weekly series of the proportion of tweets about 'death' from Mexico to assess the correlation between people's media interaction about 'death' and the rise in pandemic deaths. We estimated all-cause excess mortality rates and mortality rate ratio increase over baseline by fitting Serfling regression models and forecasted the total excess deaths for Mexico for the first 4 weeks of 2021 using the generalized logistic growth model. RESULTS: We estimated the all-cause excess mortality rate associated with the COVID-19 pandemic in Mexico in 2020 at 26.10 per 10,000 population, which corresponds to 333,538 excess deaths. Males had about 2-fold higher excess mortality rate (33.99) compared to females (18.53). Mexico City reported the highest excess death rate (63.54) and RR (2.09) compared to rest of the country (excess rate = 23.25, RR = 1.62). While COVID-19 deaths accounted for only 38.64% of total excess deaths in Mexico, our forecast estimate that Mexico has accumulated a total of ~ 61,610 [95% PI: 60,003, 63,216] excess deaths in the first 4 weeks of 2021. Proportion of tweets was significantly correlated with the excess mortality (ρ = 0.508 [95% CI: 0.245, 0.701], p-value = 0.0004). CONCLUSION: The COVID-19 pandemic has heavily affected Mexico. The lab-confirmed COVID-19 deaths accounted for only 38.64% of total all cause excess deaths (333,538) in Mexico in 2020. This reflects either the effect of low testing rates in Mexico, or the surge in number of deaths due to other causes during the pandemic. A model-based forecast indicates that an average of 61,610 excess deaths have occurred in January 2021.


Subject(s)
COVID-19/mortality , COVID-19/epidemiology , Cities/epidemiology , Female , Humans , Male , Mexico/epidemiology , Social Media
SELECTION OF CITATIONS
SEARCH DETAIL